

-2-

1. INTRODUCTION

The purpose of this paper is to propose and investigate a flow con-

trol algorithm for adjusting session rates in a data or voice network.

This algorithm is motivated by a Voice Coder scheme introduced in [1]

and called "embedded coding". In this scheme a segment of talkspurt

is coded into packets of different priority levels. The higher priority

packets contain the "core" of the speech while the lower priority packets

contain the information that "fine tunes" it. Traditional voice flow

control mechanisms either block the initiation of a call or discard small

segments of it while it is already in progress. By contrast the embedded

coding scheme dynamically trades off between voice quality and congestion

by discarding the lower "priority" packets either at the point of congestion

or the point of entry. The level of congestion at which the gaps between

the segments, delivered by the traditional schemes, render the speech un-

intelligible is much lower than the one at which the embedded coding

scheme delivers unintelligible information. This flexibility in exercis-

ing flow control makes the embedded coding scheme attractive.

Alleviation and prevention of congestion by discarding lower priority

packets at the point of entry seems to be superior to discarding them at

the point of congestion. The latter amounts to a waste of network resources.

But, it would not be advisable to forgo the capability of discarding lower

priority packets at the point of congestion, because of the time delay

involved in making the entry points aware of downstream congestion. Based

on this we believe that both capabilities should be used. The rates at

-3-

the entry points will be determined upon longer time averages of congestion

levels while the capability of discarding packets at the point of congestion

will serve to alleviate intolerable momentary bottlenecks. The rates at

the entry point will be adjusted so that the capability of discarding

packets at the point of congestion will not be exercised too often.

In this paper we discuss a method of determining the input rates at

the entry point. To this end we will ignore the capability of discarding

packets within the network in order to simplify the analysis. As in

quasistatic routing we employ an "on-line" iterative algorithm that will

solve a static problem. The hope is that the algorithm converges fast

enough relative to the session initiation and termination process, and

as a result will be able to "track" its variation keeping the rates in

the ballpark of the optimal rates at all times.

The criterion used to determine input rates is based on the notion

of "fair allocation" introduced in Section 2. Roughly speaking the

objective is to maximize the smallest session rate, and once this is

achieved to maximize the second smallest rate, etc. In Section 3 we

introduce the algorithm and describe its convergence properties.

The idea of the algorithm is to adjust the input rates of sessions

on the basis of the current level of congestion along the session path.

The necessary information is collected by a control packet sent period-

ically by each session origin along the path similarly as in flow control

methods investigated by simulation in [1]. This method of adjusting

input rates seems also suitable for other situations where fast reaction

to momentary congestion is needed. For example when the number of users

-

-3a-

in the network is small but some of these users can overload the network

if left uncontrolled to transmit at maximum rate, then a dynamic method

of routing and flow control is needed. The ideas of this paper can

provide an alternative to existing techniques [7], [8] in such situations.

Further work is required along this direction.

-4-

2. PROBLEM FORMULATION

Consider a network with nodes 1, 2, .. ,N and a set of directed

links L. Each link acL has a capacity C a associated with it--a positive

number. Let S denote a set of sessions taking place between nodes. Each

session seS has an origin node associated with it and traverses a subset

of links denoted by L s. Note that we do not restrict the session to have

a single destination, so the set of links L 5may be for example a tree rooted

at the origin node of s and used for broadcasting messages throughout

the network. We denote by S athe set of sessions traversing a

link aeL. If r5 is the input rate of session s (in data units/sec)1 then

the flow F of a link ar-L is given bya

Fa se' r.(
5Ea

The problem broadly stated is to choose a vector of session input rates

r =(.,r 5,.. which results in a set of "satisfactory" link flows

IF acL}, and at the same time maintains a certain degree of "fairness"

for all sessions.

It is customary to consider as one of the characteristics of a fair

allocation of resources in a network the feature that it is indifferent to

the geographical separation of the session's origin and destinations. Al-

though there might be different priorities assigned to sessions, these

priorities are not assigned on the basis of geographical distance. More-

over, two sessions of the same priority should obtain the same rate, if

the rate of one can be traded for the rate of the other without overload-

ing the network or reducing the rate of any other session. This is in

the spirit of making the network "transparent" to the user.

To capture the notion of fairness and priority as presented above

we define the notion of fair allocation:

-5-

For a vector x = (xl x . x in the Euclidean space Rn, we consider

-1-2 -the vector i = (x ,x2,...,x) the coordinates of which are the same as

those of x but are rearranged in order of increasing value, i.e. we have

x 1 < X 2...< x nand with each i u i,...,n we can associate a distinct i' such

that x - x We call x the increasing permutation of x. Given a subset

X of Rn we will say that a vector xcX is a fair allocation over X if for

every vector yeX the increasing permutation x of x is lexicographically

greater or equal to the increasing permutation j of y, i.e. if 3j >

for some j, then there exists an i < j such that i < xi.

If we view X as a "feasible" set, a fair allocation vector x over X

solves a hierarchy of problems. The first problem is to maximize the

minimal coordinate of vectors in X. The second problem is to maximize the

second minimal coordinate over all vectors which solve the first problem,

etc.

Hayden [2] proposed an algorithm which results in a rate vector

r = (..., rs, ...) which is a fair allocation over the set defined by

Fa < pC, V aeL, (2)

where p is some constant between 0 and 1. Jaffe 13] proposed an algorithm

which obtains a rate vector r such that the vector r..., srs, ...) is a

fair allocation over the set defined by

S r <Ca a V scS, aeLs, (3)

Fa < C V acL, r > 0, V ses, (4)

ai

-6-

where s is some positive constant that characterizes the priority of

session s.

The rationale behind the fair allocation problem based on (2) is quite

simple: we maximize the minimum session rate while not allowing the flow

of any link to be more than some given fraction of its capacity. The

rationale behind (3), (4) is somewhat more sophisticated. Primarily it

enables us to establish preferences among sessions, and to accomodate

fluctuations of a session rate which depend linearly on the rate as we will

demonstrate shortly.

While Jaffe's algorithm is not iterative and as a result is somewhat

unsuitable for distributed operation, Hayden's algorithm may result in

transient flows that are larger than some link capacities (for an example

see [4], p. 39).

Our purpose in this paper is to propose and analyze an iterative

algorithm that solves a problem that is more general than Jaffe's [3],

maintains at all times feasibility of link flows with respect to capacities,

and is suitable for distributed operation. To this end we generalize

the set defined by (3), (4) as follows:

For each link aeL and session seS let ga: - and Bs: R) R

be functions mapping the nonnegative portion of the real line R into it-

self. We are interested in finding a rate vector r such that the vector

(...,s(rs),...) is a fair allocation over the set defined by

s sI

S(rs) < ga(Ca-Fa), V seS, aeLs

Fa < C , V acL, rs > 0, Vs S. (6)

a

-7-

A vector r with this property will be called a fair allocation rate.

We make the following assumptions regarding the functions ga C-) and

8sC.):

Assumption A: For all acL, ga(e) is monotonically nondecreasing, and,

for all scS, $ s(-) is continuous, monotonically increasing, and maps R
+

onto R+. (This implies also that the inverse 1(.) exists, is con-

tinuous, monotonically increasing and maps R+ onto R+).

Assumption B: The function Hsa(-) defined by

Hsa (f) = l ga (f)], V seS, aLL, feR

is convex and differentiable on and satisfies

Hsa (0) = 0.

Assumption B is not very restrictive. It is satisfied in particular

ifhoh (.) and g (.) are convex, differentiable and monotonically in-
a + a

creasing on R , and ga (0) = 0. Also the convexity assumption in Assumption B can be

replaced by a concavity assumption without affecting the convergence

result of the next section, but this will not be pursued further.

The introduction of the nonlinear function 8s(*) allows us to assign

different priorities to different sessions in a more flexible manner than

in (3). and allows additional freedom in mathematically expressing alRo-

rithmic design objectives. As an example let us provide justification

for the use of a particular form for g in the case where each session

is a voice conversation.

-8-

Suppose that the length of time over which each session rate is

averaged is short relative to the "time constant" of the counting process

of the number of off-hook speakers which are currently in talkspurt mode.

Since about 30% of a talkspurt is silence and some segments of the talk-

spurt need more encoding than others, we view the bit rate generated by

the Vocoder for session seS as a stochastic process with mean rs --the rate

assigned to user seS. We thus implicitly assume that the Vocoder has the

means of dynamically reconfiguring to the demands of the voice to achieve

the desired average rate. Suppose that we want to reserve excess capacity

on each link so as to be able to accomodate a variation at least as large

as the standard deviation of the flow on the link. Assume that the

standard deviation of the rate of each session seS is y.rs where

0< y<l. For a fixed link aeL let s'eS be such that

st = arg max r .

Then, by the independence of the rates of different sessions, we have,

assuming Fa < Ca , that the standard deviation a(Fa) of the flow Fa

satisfies

aCF) = [a(r)A]2 -

I (j rs) r s , < Y Car s '
sa

Suppose we take in (5)

I, - -
f

-9-

1 2
as (rs,) r s , gaC a-Fa) 2 y (Ca-F a) (8)

Then from (5), (7) and (8) we obtain

a(Fa) < Y.Cra, l Caga(Ca-F a) - Ca - Fa -

We are thus guaranteed to be able to accomodate the standard deviation

of the flow resulting from the fair allocation.

In the second interpretation, the length of time over which the

rate is averaged is relatively long with respect to the "time constant"

of the counting process of the number of off-hook speakers in talkspurt

mode. In this case we deal concurrently with all the off-hook sessions

and want to be able to accommodate the standard deviation around the

mean of the process (i.e., the instantaneous effect of the number of

speakers at the talkspurt mode is washed out by the long time average).

Let q be the fraction of time a speaker is in the talkspurt mode and

assume his rate while in the talkspurt mode is constant. Then using

notations as before

a(F a (r s /q)2.q(1-q)]
seS a

12< (r 1C
- q a s

< (!.:aC 1/2 [ga(C -Fa /2.
q a a a a

-10-

Again, by choosing g as in (8) with y =we obtaina l-qo

a(F a) < C a-F a

The point we want to make by the above arguments is that there is

often a need to allow ga to be a nonlinear function, which may depend also on

C , rather than only on the excess capacity as (3) implies. The exact
~a

role of ga is up to the network designer to decide, and our formulation

allows him a great deal of flexibility in this regard.

It is possible to show that Assumptions A and B guarantee existence

and uniqueness of a fair allocation rate. The proof given below is con-

structive and is based on a finitely terminating algorithm. However this
algorithm, in contrast with the one of the next section, is not suitable

for distributed, on-line operation since it must be restarted each time

an old session is terminated or a new one is initiated.

Consider first the problem of finding a vector r (..., rs) that

maximizes

min s(r S)

sES

over the feasible set

R0 = fr[(5) and (6) are satisfied}

This is the first problem in the hierarchy of problems solved by a fair

allocation rate, and can be solved simply by observing that its optimal

value [i.e. max min s(rs)] is equal to
reR0 seS

w = max{wlw < ga[Ca - sl(w)], aeL} (9)a sa s

....
E a..

- ww -, li i i l i i l i im il a i i lli: i I . . i F -I I'I I....A

-11-

This follows easily from the fact that both g and 1 are monotonically

nondecreasing. Denote

L*(l) = {aEL ga [Ca- a gsl(w*)]}

a SES a

S*(l) = {seS I L s /)L*(1) 0) 0.

For any fair allocation rate (..., rs, ...) the rate of the sessions in

S*(l) is equal to (w*), i.e.

r = Bs (w*), V sCS*(,

while L*(l) may be viewed as the set of bottleneck links the presence
of which does not allow us to increase min as(r) beyond the level w*

Ss '

Therefore for the purposes of determining further a fair allocation

rate vector, the rates of the sessions scS*(l) are fixed at sl (w1) and

we can consider a reduced network whereby the links acL*(l) and sessions

seS*(l) are eliminated while the capacity Ca of each link aiL*(1) is

replaced by

Ca -
* sCS*(l)lSa S w)

If S*(1) = S we are done; otherwise we can consider the problem of

maximizing the minimal value of 8s(r) in the reduced network similarly
5

as earlier. This will determine a new optimal value w* with w* > w*, a

~~~~ ~~~ ~ 2 1 ' '- ° : :II ,...i



-12-

a new set of bottleneck links L*(2), and a set of sessions S*(2) such that

Bs(r s ) = w*, V sS*(2)

in any fair allocation vector. If S*(l)LS*(2) = S we are done; otherwise

we can proceed by constructing a reduced network and continue in the same

manner as earlier until we exhaust all sessions. This argument constructs

a fair allocation rate r* and shows that it is uniquely defined in terms of

the scalars w*, w*,..., and the corresponding sets S*(l), S*(2),... Note
also that the session rates r*, seS and associated link flows F*,aeL

s a
satisfies

= min H (C -F*), V sES. (10)
aEL sa a a

r acL

The algorithm of the next section is based on this property.

We can also show the reverse property namely that if a rate vector

r* satisfies (10) then it is a fair allocation rate. To see this let

r = (...,rs,...) satisfy (10) or equivalently

8sr) = ain ga(Ca-F) V sES. (11)s s aL aa aac L
s

Observe that from the definition (9) of w* and (11) we obtain

w* > w1- 1

where

W = min min ga(Ca-Fa).
sCS acL s



-13-

Let aCL be any link such that

gj(Cj-Fj) = WI.

Then from (11) we have

(l)~ s .r s

The inequality Wl < w* implies that F-= < r= Fsis- sis-

where r* is the fair allocation rate. But this implies that

wl=ga(Ca-F ) > g-.(C.-Ft) > w*,

Therefore we must have w1 = w* and it follows that the vector solves

the first problem in the hierarchy of the fair allocation problem.

Proceeding similarly as earlier we can show that i solves all the problems

in the hierarchy of the fair allocation problem and is therefore a fair

allocation rate.

We summarize the conclusions from the preceding arguments in the

following proposition.

Proposition 1: Let Assumptions A and B hold.

a) There exists a unique fair allocation rate.

b) r* = (....r....) is a fair allocation rate if and only if it

satisfies

s(r*) = min ga(Ca-F*), V sCS (12)

o euac a a a

or equivalently



-14-

Smin H (Ca-F*), V sS. 13's aeL s a a a

In some situations it may be reasonable to consider, in addition to

(5) and (6), the constraint

r < R V seS (14)

where Rs is given upper bound to the rate of session rate s. We may view

Rs either as a limit on rate imposed by technological restrictions or

as a maximum desired rate by session s. The problem of finding a fair

allocation rate over the set defined by (5), (6), and (14) can be reduced

to the problem considered earlier by introducing for each seS, an

artificial link as traversed only by session s by setting the capacity

Ca  of that link equal tos

Ca s= R (Rs),as s

and by selecting the function ga to be the identity. Then the constraint

Ss (r s ) < s (C -r) C a r

becomes r + (r) < Ca R + 8s(Rs) and is equivalent to (14).
s



-15-

3. THE ALGORITHM

Let rk = (..., rs, ... ) be the rate vector obtained after k iterations

and let {Fak be the corresponding set of total link flows. Assume that

0 < Fk < C V acL. (15)
- a a

k+1 k+1The new rate vector r r .. ) obtained at the (k+l)st iteration

is given by

rk+l min {rs + ya [Hs(C -F ) - r k}, V sES (16)
rasL s a sa a a s

k .
where ya is given by

k 1
k (17)Ya

S1+ Ha(Ca'F )
sesa a a a

and H;a(.) denotes the first derivative of Hsa(.). In a practical

implementation of the algorithm the link flows Fk can either be measured
a

(by taking a time average), or they can be mathematically computed as

kthe sum of the session rates r , sESa. The session rates computed via

(16), (17) will have to be translated into physical rates by software

residing at the session origin nodes.

The following lema shows among other things that property (15) is

maintained by the algorithm at each iteration and therefore if the initial

link flows F0 are within the link capacities the same is true for all

a a

link flows generated by the algorithm.

Lemma 1: Let Assumptions A and B hold and assume that the initial rate

vector r is such that



-16-

0 0
0 < r s scS, 0 < F°  < C , V aL. (18)

Then if {r k } is a rate sequence generated by the algorithm (16) 
with yak

given by (17) we have for all k

k k
O < r , V se, 0 < F a < Ca V aeL. (19)

Furthermore

Fa < Hsa Ca-F V aeL, k > 1. (20)
SESa

Proof: See Appendix A.

The idea behind the choice of expression (17) as well as the intuition

behind Lemma 1 can be best explained by the use of Figure 1. Let the function
+ R

G a(.): R+ -) be given by

G a(F) = Hsa(Ca-Fa) (21)
aas a a

Fk k+l
The figure depicts the relations between F and F , as if the networka a a sithneor

ke 1
consisted of the single link a. F a is determined by intersection the

k k
tangent to the graph of Ga(Fa) at the point (Fa, Ga(Fa)), with the line

y = F a. The reader can easily convince himself that lim sup Fk must lie

k a

in the area where

Fa < Ga(Fa)

which gives rise to the lemma. Figure 2 shows why just monotonicity of

Ga(,) is not sufficient for the lemma to hold.

We can now state the main result of this paper.



-17-

I Figure 1



Figure 2



-19-

Proposition 2: Under the assumptions of Lemma 1 the sequence {r kI con-

verges to the fair allocation rate.

Proof: See Appendix A.

A Variation of the Algorithm.

In iteration (16) we have assumed that updating of all the rates

rtakes place simultaneously. It is possible to consider other related

algorithms whereby a single session rate r s is updated using (16), then

the flows F a are updated to reflect the change in r s, then another session

rate is updated using (16) and so on until all the session rates are

taken up cyclically in a fixed order. This one-session-at-a-time mode

of operation is reminiscent of the Gauss-Seidel method for solving systems

of equations and is perhaps better suited for distributed implementation.

It is possible to show that all the results of this section hold for this

modified algorithm as well.

A question of considerable interest is whether a totally asynchronous

$ distributed version of algorithm (16) will work satisfactorily (compare with

algorithms investigated in [S], [6]). In such an algorithm each session origin

sends at arbitrary times along the session path a control packet contain-

ing the current rate of the session. As the packet travels to its

destination the information needed to compute the right side of (16) is

collected. (We assume here a single destination per session and that

each link a on the session path maintains the current value of F aas the

sum of all currently assigned session rates r5 s ss, and



- 20-

the form of the function H sa () for each sCS a) The destination returns

the new rate to the session origin and the links along the session path.

This type of algorithm is very attractive from the practical point of

view since it does not require a session synchronization protocol. Its

convergence properties however are as yet unclear and are currently

under investigation. It is interesting to note that some of the algo-

rithms investigated by simulation in [1] are of similar nature.



-21-

REFERENCES

[1] T. Bially, B. Gold, and S. Seneff, "A Technique for Adaptive Voice
Flow Control in Integrated Packet Networks", IEEE Trans. Comm., Vol.
COM-28, 1980, pp. 325-333.

[2] E. M. Gafni, "The Integration of Routing and Flow Control for Voice
and Data in a Computer Communication Network", Ph.D. Dissertation,
Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts, August 1982.

[3] J. M. Jaffe, "A Decentralized 'Optimal', Multiple-User, Flow Control
Algorithm", Proceeding of Fifth Conference on Computer Communication
(ICCC-80), Atlanta, Georgia, November 1980, pp. 839-844.

[4] H. Hayden, "Voice Flow Control in an Integrated Network", M.S. Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts, June 1981.

[S] D. P. Bertsekas, "Distributed Asynchronous Computation of Fixed Points",
Report LIDS-P-1135-A, Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, August 1981, to appear in
Mathematical Programming.

[6] D. P. Bertsekas, "Distributed Dynamic Programming", IEEE Trans. on Aut.
Control, Vol. AC-27, 1982, pp. 610-616.

[7] F. H. Moss and A. Segall, "An Optimal Control Approach to Dynamic Rout-
ing in Networks", IEEE Trans. on Aut. Control, Vol. AC-27, 1982, pp. 329-
339.

[8] B. Hajek and R. G. Ogier, "Optimal Dynamic Routing in Communication Net-
works with Continuous Traffic", Coordinated Science Lab. Report, Univ.
of Illinois, Urbana, 1982.

I,1



-22-

APPENDIX A

Proof of Lemna 1:

It suffices to show (19)-(20) for k = 1. Consider the function

G :R + -* R+ defined by
a

H (C-F) if 0 < F <C
G ( a s~a sa a- a - a-: CaGa(F a) = a

0 if Fa > Ca.

From (16) and (17) we have

1 =1i 0 r0 C
ms a5  a Ha

r = nacLs r 1-G (F0 ) [HaC'F)"r] o+Vsc

or

~H (C F0 P r G'(F0 )
r ( sa a a s a (r1  = raint 1 -, ¥s (A. 1)
S aLs lGa(F)

Since G (-) is monotonically nonincreasing we have Ga(F0 ) < 0, and since
aa a -

also H (C -F ) > 0 we obtain from the hypothesis r > 0 and (A.1)
sa a a -

1
r > 0, V scS, (A.2)

and therefore also

F1 > O, V acL. (A.3)
a -

,'1

'I!
____

o
__



-23-

From (A.1) we have

H (C -Fa) - r0Ga (F ° )
1 sa a a saV s, aELs 1 - G'(F ° ) s

a a

and by adding over all sES we obtain
a

Ga(F 0 ) - F°G'a (F0 )a

F1 a a a aeL.

Since 1-G (F0 ) > 0 we obtain from the inequality above
a a

F1 < G (F) + (FlI-F0)G a (FO)a a a a a a

Since Ga () is convex the right side of this inequality is less or equal

to Ga (Fa) and we obtain

1 a

F I< Ga(F). (A.4)a - a a

Since Ga () is monotonically nonincreasing and G a(F) = 0 for F > Ca we

obtain from (A.4)

1F < C . (A.5)

From (A.2)-(A.5) we obtain (19) and (20). Q.E.D.

Proof of Proposition 2:

Denote

k
r* lim inf r V ses.

s .s



-24-
kk

Fix sFS and consider a subsequence {rs}kK converging to r. We have
Ss

from (16)

r = m rk-I k-i (CF k-I k-lD
r s  lir mn s + Ya [Hsaaa s 

keKs

Since Ls consists of a finite number of links we may assume (by passing

to a subsequence of Ks if necessary) that there exists a link as such

that

r* = lir {k [H (Ca F )k-I r k }. (A.6)
sS S S ss

k-i,

Since {F - }- is bounded above and below we may assume (by passing to a
as kcK

S
subsequence of Ks if necessary) that for some Fa

S

lir F -  F
k-Ks  as as

Denote also

a =lim Yka
s l-Ga (Fa) keK as"

as s s
~ k-).w

We have from (A.6)

r* > (1-j ) lim inf rk -  + H (Cs-F )
s as  k-K s as sa a as

k k

> (1y )r* + ya H (Ca -limSupFk )
a5s sa s k as



-25-

and finally

r* >H (C - lim sup F ) (A.7)
s - sa s k- as

Since the choice of s was arbitrary we conclude that for every seS there

exists as eLs such that (A.7) holds.

Let a 1 L be such that

a, = arg min g (Ca-lim sup Fa)

aeL aa

Using the monotonicity of $ we obtain

H (C -lim sup F ) > H (C -lim sup F 
k

sa k a - saI a a

and therefore from (A.7)

r* > H (C -lim sup F k  VsS . (A.8)
s sa 1  a a

Summing (A.8) over all SESa we obtain

k
lim inf F > lim inf r r*ksal Sa k-o s Sa

a 1 k- a5 se

Hsa (C a-limsup F)

On the other hand from (20) we have

liA



-26-

1ira sup Fk < H Cc- lim sup F .

k a s :S sal a1  k a1a1

It follows that the last two inequalities as well as (A.8) hold as equations,

the entire sequence {F } converges to X r* while each sequencea1  se S
a1

{r k, sesa converges to r*.

Consider now a new network derived from the previous one by deleting

link al, and all the sessions traversing it. We consider the algorithm

executed in the same manner as before with the same initial rates for

the remaining sessions but with the capacity of each link aEL replaced by

Ca - rk

This will result in the same rate sequence for the sessions st S as in
1

the original algorithm. A trivial modification of the argument used to

show (20) in Lemma 1 shows that we will have

lim sup Fk  < I 1i (Ca - lim sup Fk) V aeL
a - S k a

a

This relation can be used to repeat the argument given earlier in order

to show the convergence of the sequences {r k to r* for all sessions

si Sa traversing the link a2 where

a2 = arg min g (C-lim sup F).
aeL a k a

a~a1

By repeating this procedure we will eventually exhaust all links

k
thereby showing that each rate sequence (r }, seS converges to r*, each

s 5

MIN-



-27-

each flow sequence {Fk}, aeL converges to F* = r* and each stepsize

a a ses s

sequence {ya1 , aeL converges to

a 1 + H (c -F*)

sesa s a(a a
a

By taking limits in (16) we have for all seS

k k k ks k-x aeL s  S as

= min limmi {r + y [H (C ) -r]} k
a kLkkk

aeL k-e S a sa a a s
S

where the interchange of min and lim above is valid since all the sequences

inside the braces converge and the number of elements of is finite.

From (A.9) we obtain for all sES

min y*[H (C F*) - rs] = 0
aFL a sa a- a saEs

Since y* > 0 for all aeL s we obtain

r* = min Hsa (C-F*) V se.S
£ aeL saa a

The result now follows from Proposition 1 [cf. (13)]. Q.E.D.



Distribution List

Defense Documentation Canter 12 Copies
Cameron Station
A!e xandria, Virginia 22314

Assistant Chief for Technology 1 Cony
Office of Naval Resea-.ch, Code ;00
Arlington, Virginia 22217

Office of Naval Research 2 Copies
Information Systems Program
Code 437
Arlington, Virginia 22217

Office of Naval Research 1 Copy
Branch Office, Boston
495 Summer Street
Boston, Massachusetts 02210

Office of Naval Research 1 Copy
Branch Office, Chicago
536 South Clark Street
Chicago, Illinois 60605

Office of Naval Research 1 Copy
Branch Office, Pasadena
1030 East Greet Street
Pasadena, California 91106

Naval Research Laboratory 6 Copies
Technical Information Division, Code 2627
Washington, D.C. 20375

Dr. A. L. Slafkosky 1 Copy
Scientific Advisor
Commuandant of the Marine Corps (Code RD-1)
Washington, D.C. 20380



Office of Naval Recearch 1 Copy
Code 455
7.--irngton, Virginia 22217

Office 7 f Naval Research 1 Copy
Co,'e 45S
zriington, Virginia 22217

N"avai riectronics Laboratory Center 1. Copy
Advanced Software Technology Division
Code 5200
San Diego, California 92152

Mr. E. H. Gleissner 1 Copy
Naval Ship Research & Development Center
Computation and Mathematics Depar tment
Bethesda, Maryland 20084

Captain Grace M. Hopper 1 Copy
Naval Data Automation Command
Code OOH
Washington Navy Yard
Washington, DC 20374

Advanced Research Projects Agency I Copy
Information Processing Techniques
1400 Wilson Boulevard
Arlington, Virginia 22209

Dr. Stuart L. Brodsky 1 Copy
Office of Naval Research
Code 432
Arlington, Virginia 22217

Prof. Pouad A. Tobagi
Computer Systems Laboratory
Stanford Electronics Laboratories
Department of Electrical Engineering
Stanford University
Stanford, CA 94305


